skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tong, Jie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    B cell acute lymphoblastic leukemia (B-ALL) blasts hijack the bone marrow (BM) microenvironment to form chemoprotective leukemic BM “niches,” facilitating chemoresistance and, ultimately, disease relapse. However, the ability to dissect these evolving, heterogeneous interactions among distinct B-ALL subtypes and their varying BM niches is limited with current in vivo methods. Here, we demonstrated an in vitro organotypic “leukemia-on-a-chip” model to emulate the in vivo B-ALL BM pathology and comparatively studied the spatial and genetic heterogeneity of the BM niche in regulating B-ALL chemotherapy resistance. We revealed the heterogeneous chemoresistance mechanisms across various B-ALL cell lines and patient-derived samples. We showed that the leukemic perivascular, endosteal, and hematopoietic niche-derived factors maintain B-ALL survival and quiescence (e.g., CXCL12 cytokine signal, VCAM-1/OPN adhesive signals, and enhanced downstream leukemia-intrinsic NF-κB pathway). Furthermore, we demonstrated the preclinical use of our model to test niche-cotargeting regimens, which may translate to patient-specific therapy screening and response prediction. 
    more » « less
  3. null (Ed.)
    Programmed cell death protein-1 (PD-1) checkpoint immunotherapy efficacy remains unpredictable in glioblastoma (GBM) patients due to the genetic heterogeneity and immunosuppressive tumor microenvironments. Here, we report a microfluidics-based, patient-specific ‘GBM-on-a-Chip’ microphysiological system to dissect the heterogeneity of immunosuppressive tumor microenvironments and optimize anti-PD-1 immunotherapy for different GBM subtypes. Our clinical and experimental analyses demonstrated that molecularly distinct GBM subtypes have distinct epigenetic and immune signatures that may lead to different immunosuppressive mechanisms. The real-time analysis in GBM-on-a-Chip showed that mesenchymal GBM niche attracted low number of allogeneic CD154+CD8+ T-cells but abundant CD163+ tumor-associated macrophages (TAMs), and expressed elevated PD-1/PD-L1 immune checkpoints and TGF-β1, IL-10, and CSF-1 cytokines compared to proneural GBM. To enhance PD-1 inhibitor nivolumab efficacy, we co-administered a CSF-1R inhibitor BLZ945 to ablate CD163+ M2-TAMs and strengthened CD154+CD8+ T-cell functionality and GBM apoptosis on-chip. Our ex vivo patient-specific GBM-on-a-Chip provides an avenue for a personalized screening of immunotherapies for GBM patients. 
    more » « less
  4. Abstract Macrophages are a predominant immune cell population that drive inflammatory responses and exhibit transitions in phenotype and function during tissue remodeling in disease and repair. Thus, engineering an immunomodulatory biomaterial has significant implications for resolving inflammation. Here, a biomimetic and photoresponsive hyaluronan (HA) hydrogel nanocomposite with tunable 3D extracellular matrix (ECM) adhesion sites for dynamic macrophage immunomodulation is engineered. Photodegradative alkoxylphenacyl‐based polycarbonate (APP) nanocomposites are exploited to permit user‐controlled Arg–Gly–Asp (RGD) adhesive peptide release and conjugation to a HA‐based ECM for real‐time integrin activation of macrophages encapsulated in 3D HA–APP nanocomposite hydrogels. It is demonstrated that photocontrolled 3D ECM–RGD peptide conjugation can activate αvβ3 integrin of macrophages, and periodic αvβ3 integrin activation can enhance anti‐inflammatory M2 macrophage polarization. Altogether, an emerging use of biomimetic, photoresponsive, and bioactive HA–APP nanocomposite hydrogel is highlighted to command 3D cell–ECM interactions for modulating macrophage polarization, which may shed light on cell–ECM interactions in innate immunity and inspire new biomaterial‐based immunomodulatory therapies. 
    more » « less